
Amazon
Primer

Things I wish they’d have
told me before I got started

Kisha Delain
&

Levi McCormick

Outline

● Services
● Tutorials
● Know before you go:

words of caution
● $$$$
● Q&A

200+ Services

○ Elasticache
○ RDS
○ SQS queueuuueueueuee
○ kinesis
○ ECS/EKS
○ EC2
○ lamba
○ IAM
○ S3
○ Cloudfront
○ Cloudwatch
○ Api gateway

… and many more

r/ProgrammerHumor

What are you trying to do?

Store Some Stuff
● Databases: RDS, DynamoDB
● Blobs: S3
● Cache: Elasticache

Transfer Stuff (Information)
● SQS queueueueuees
● API Gateway
● Cloudfront

Compute Some Stuff
● Event-driven, small: Lambdas +

Step functions
● Too big? Too long?: EC2 / Fargate

Containerize Your Stuff
● ECS / EKS

Manage Your Stuff
● AWS Identity Center
● IAM

Watch Your Stuff
● CloudWatch

Machine Learning, Analytics, etc: there
are a bunch here we won’t touch

AWS IAM

Permissions

VPC

Networking

CloudWatch

Logging/Metrics

Services - Unsung Heroes

Where To Learn

● AWS Tutorials
● Cloud Resume Challenge
● 100 Days of Cloud
● AWS Cloud Institute

Original comic by Hannah Hillam

https://aws.amazon.com/getting-started/hands-on/
https://cloudresumechallenge.dev/
https://www.100daysofcloud.com/
https://aws.amazon.com/training/aws-cloud-institute/

Know Before You Go

● Don’t use Root Creds
● Don’t trust AWS IAM

examples
● Multi-account
● Budgets
● Why is it so expensive?
● Well Architected Framework

Don’t Use Root Creds

Basically God Mode in the Cloud

Most Reddit posts of compromised
accounts are due to people exposing root
credentials on Github.

Use restricted IAM users and/or role
assumption instead.

AWS Identity Center

Service formerly known as AWS SSO.
Manages Permission Sets and
assigns them to users across
accounts in an AWS Organization.

If you can’t/won’t use SSO, use IAM
users with limited permission sets.

Don’t Trust AWS IAM Examples

s3_client = boto3.client(

 "s3",

 aws_access_key_id=AWS_ACCESS_KEY_ID,

 aws_secret_access_key=AWS_SECRET_ACCESS_KEY,

)

AWS SDK Credential Chain Resolution

SDKs automatically resolve
AWS credentials following
a predictable pattern,
prioritizing environment
variables, then credential
files, then a metadata API
when running in the cloud.

Image courtesy of Steve Gordon
https://www.stevejgordon.co.uk/credential-loading-and-the-aws-sdk-for-dotnet-deep-dive

Not everything needs to be admin

Scoped roles are good policy
and prevent you from
contributing to someone’s
bitcoin wallet.

Multi-account

AWS best practices recommend
using Accounts as a strong boundary
to define service domains.

Environments should live is separate
Accounts.

Budgets

Set a budget alert to let
you know when exceed
your comfort threshold.
Then, TAKE ACTION.

Why Is It So Expensive?

You’re paying for scaled
operations. AWS is far better
at replacing failed hard drives
than you are.

Know Your Billing Dimensions

Application Load Balancers
sound simple on the surface,
but billing is super
complicated.

Google:
“aws [service] pricing” to find
out how a given service is
billed before you put it into
production.

Traffic, the Silent Wallet Killer

AWS charges a nearly
criminal amount for data
transfer, especially out to the
internet. Watch for these in
high volume applications.

Free* Tier(s)

Always Free (First X of usage)

12 Months Free (new
customers only)

Free Trials (time limited for
new services)

Well Architected Framework

AWS documented guidance on how to build
in the cloud.

Q&A
Slides

Levi: https://www.linkedin.com/in/levimccormick/

Kisha: https://www.linkedin.com/in/kishadelain/

https://www.linkedin.com/in/levimccormick/
https://www.linkedin.com/in/kishadelain/

